

Proposed Regulation on the Commercialization of Alternative Diesel Fuels

California Air Resources Board Industrial Strategies Division Oil and Gas and GHG Mitigation Branch

Overview

- Need for ADF Proposal
- Regulatory Development
- Specific Application to Biodiesel
- Impacts & Benefits
- Potential 15-Day Changes

Need for ADF Proposal

What Are ADFs?

- Alternative Diesel Fuels are diesel substitutes:
 - Not liquid hydrocarbons & no ARB fuel specification
- Examples of ADFs
 - Biodiesel (completing evaluation), Dimethyl Ether (undergoing evaluation)
- Not ADFs
 - Renewable diesel, Natural Gas
- ADF Blends
 - Typically labeled "BXX" where XX is the percent ADF in a blend
 - Example: B10 is 10 percent biodiesel, 90 percent diesel

Comparison of Biodiesel & Renewable Diesel

Biodiesel (ADF)

Fatty acid mono-alkyl esters

$$_{13}$$
C $_{12}$ $_{9}$ $_{0}$ $_{CH_3}$

Renewable Diesel (non-ADF)

Complementary Fuels

- Both generally low carbon, can use same feedstocks, different production process
- Substantial GHG, criteria, toxics reductions
- Biodiesel has good lubricity
- Renewable diesel has good cold temp. performance

Why is ADF Proposal Needed?

- Alternative diesel fuels bring significant benefits
- State (LCFS) and federal (RFS) programs incent low carbon ADF fuels in California
- Emerging ADFs need market certainty, clear ground rules for commercialization in CA
- Need to maintain environmental & public health protections
- Court ruling in POET case reinforced need for an ADF regulation to address biodiesel NOx emissions

LCFS Attracts ADFs & Other Low Carbon Fuels

- Biodiesel and renewable diesel have benefits:
 - Both lower GHG, PM, toxic emissions
 - Renewable diesel also decreases NOx
- Biodiesel can increase NOx in older heavy-duty vehicles
- Proposal applies lessons learned during biodiesel testing, realizes benefits while preventing NOx increase

LCFS Attracts ADFs & Other Low Carbon Fuels (cont.)

Emerging ADFs Need Clear Ground Rules

- Current evaluation process comprises elements from various regulations and statutes
- ADF proposal codifies separate elements and procedures into one regulation
- Sets clear ground rules for application, review, approval
- Provides market certainty
- Encourage emerging fuels like DME

Regulatory Development

10 10

Extensive Public Development Process

- Eight years of biodiesel emissions testing,
 ~\$3 million on test programs
- Literature review, independent statistical analysis
- Thirteen public meetings to discuss test protocols, results, multimedia evaluation
- Seven public workshops to discuss ADF proposal (2013 – 2014)
- Comprehensive biodiesel testing (including different blends and types) and public participation informed ADF proposal

NOx Effect of Biodiesel and Renewable Diesel Fuels in Older HD Vehicles*

*NOx effect measured in pre-2010 engines

Objectives of Proposed Regulation

- Works with LCFS to advance production and import of low carbon ADFs
- Establish clear pathway for commercialization of biodiesel and emerging ADFs
- Maintain public health and air quality protections
- Prevent NOx emission increases from biodiesel use

ADF Proposal Overview

- Two main provisions
 - Three stage evaluation of ADFs and effects on the environment
 - Follows ADFs from lab to demonstration to commercial scale
 - Protects environment during evaluation
 - May lead to additional controls or simply reporting depending on ADF environmental effects
 - Fuel specifications and in-use requirements for biodiesel as first ADF
 - Biodiesel undergoing multimedia evaluation, near completion
 - Evaluation of biodiesel was model for phase-in requirements

Evaluation Process for Emerging ADFs

15 15

General Three-Stage Process for Emerging ADFs

- Three-stage process to evaluate environmental impacts of emerging ADFs prior to widespread use
- <u>Multimedia Evaluation</u> determines potential adverse emissions impacts for pollutant(s) of concern
 - analysis considers offsetting factors
 - need for in-use requirements and fuel specifications
- In-use requirements including Pollutant Control Level control adverse emissions
- Establishes <u>safeguards</u> to maintain air quality protections

General Three-Stage Process for Emerging ADFs

Specific Application to Biodiesel

18 18

Summary of Biodiesel Requirements

- Reporting provisions begin in 2016
- In-use requirements begin in 2018
- Certification procedures included in proposal
 - Allow for innovative additives, feedstocks, production
- In-use requirements sunset once new vehicles comprise 90 percent of on-road HD fleet; ~2023
- Program review by 2020

Summary of Biodiesel Requirements (cont.)

- Biodiesel limited to B5 or B10 per gallon depending on feedstock, season
 - Feedstocks distinguished by cetane number, higher cetane leads to lower NOx emissions, higher blends allowed
 - Additives allow higher blends up to B20
- Light and medium-duty, and new heavy-duty diesel
 vehicles shown not to increase NOx with biodiesel use
 - SCR controls in heavy duty eliminate NOx increase (NTDE)
 - Exemptions granted on a case-by-case basis

NOx Effect of Biodiesel and Renewable Diesel Fuels in Older HD Vehicles*

*NOx effect measured in pre-2010 engines

Offsetting Factors that Reduce Biodiesel NOx

- Primary market for biodiesel is heavy-duty vehicles
- Renewable diesel decreases NOx compared to conventional diesel, offsets NOx from biodiesel
- Renewable diesel use has increased significantly and expected to increase over time.
- Newer HD vehicles (2010+), passenger vehicles no increased NOx
- Offsetting factors expected to reduce biodiesel NOx emissions over time, controls needed in interim

Fleet Turnover = Long-term Biodiesel Control Unnecessary

Biodiesel Compliance Options

- Blend at or below B5
- High cetane feedstock, winter, blend up to B10
- Targeted fleet sales, blend up to B20
- Use additive, blend up to B20
- NOx control level for biodiesel:

NOx Control Levels		Per-Gal Blend Limit (November 1 to March 31)
Low Cetane BD (<56)	B5	B10
High Cetane BD (≥56)	B10	B10

Review of Biodiesel Blend Limits

- Program review to be completed by 2020
 - Evaluate adoption rate of SCR in off-road diesel fleet
 - Assess projected volumes of biodiesel, renewable diesel
 - Review will ensure proposal effectively protects emissions program

 Blend limits for biodiesel sunset once HD fleet penetration exceeds 90 percent model yr 2010+

Impacts and Benefits

26 26

ADF & LCFS Environmental Impacts: Background

 One Draft Environmental Analysis was prepared for both Proposed LCFS & ADF Regulations.

 Existing regulatory and environmental setting in 2014 is used as baseline for the analysis.

ADF & LCFS Environmental Impacts: Results

- Beneficial Impacts:
 - GHGs, air quality, and energy
- Less-than-significant adverse impacts
- Potentially significant adverse impacts:
 - Some related to long-term changes in fuel production and supply
 - Others related to construction of new facilities, and shorter duration
- Significant cumulative impacts also identified for some resources.

Economic Impacts of ADF & LCFS

- Two economic evaluations were completed:
 - Statewide macroeconomic effects of LCFS + ADF proposals
 - Evaluation of direct costs of ADF proposal
- Macroeconomic evaluation used REMI model, shows very small impacts on employment
- Direct costs of ADF proposal expected to be ~1/10 of a cent per gallon of B5 diesel in 2018, decreasing to zero by ~2023
- Challenges for small producers reliant on sales of higher biodiesel blends

Benefits of ADFs

- Can have lower NOx, PM, toxic risk
 - Biodiesel, renewable diesel and DME reduce PM
 - Renewable diesel reduces NOx
 - Reductions in localized toxic exposure
- Generally have lower GHG emissions
- Reduce petroleum use can help achieve 2020-2030 goals for GHGs, criteria, toxics
- Energy security
 - Biodiesel derived from feedstocks primarily sourced in USA
 - DME derived from domestic natural gas, methanol, or biomethane

Potential 15-Day Changes

31 31

Potential 15-day Changes

Further blend level flexibility for captive fleets

- Clarification of certification procedures
- Definitional changes
- Minor clarifications and corrections

Timeline will mirror LCFS

Staff Recommendation

- No Board adoption recommended today
- Direct staff to continue working with stakeholders to refine proposal

Coordinate with development of LCFS regulation

Next Steps

Complete environmental analysis document

Respond to comments on environmental analysis

Complete biodiesel multimedia and peer review

15-day changes